segunda-feira, 3 de agosto de 2020



TRANS-QUÂNTICA SDCTIE GRACELI, TRANSCENDENTE, RELATIVISTA SDCTIE GRACELI, E TRANS-INDETERMINADA.

FUNDAMENTA-SE EM QUE TODA FORMA DE REALIDADE SE ENCONTRA EM TRANSFORMAÇÕES, INTERAÇÕES, TRANSIÇÕES DE ESTADOS [ESTADOS DE GRACELI], ENERGIAS E FENÔMENOS DENTRO DE UM SISTEMA DE DEZ OU MAIS DIMENSÕES DE GRACELI, E CATEGORIAS DE GRACELI.




FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS =


TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
número atômico, estrutura eletrônica, níveis de energia 
onde c, velocidade da luz, é igual a .]
X
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI.
  • X
  • CATEGORIAS DE GRACELI
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D

X
 [ESTADO QUÂNTICO]


poço de potencial representa a energia potencial em forma de poço envolvida num certo sistema e pode ser qualificado como finito ou infinito. Um poço de potencial é a região em torno de um mínimo local de energia potencial que, por sua vez, é a forma de energia que está associada a um certo sistema, no qual ocorre interações entre diferentes corpos, e está relacionada com a posição que determinado corpo ocupa.
A energia potencial de um sistema pode ter quatro origens distintas que estão correlacionadas as quatro forças fundamentais da natureza: força eletromagnética, força gravitacional, força fraca e força forte.
Sob uma perspectiva quântica, o poço de potencial representa o confinamento quântico da partícula em questão e pode provocar a quantização da energia da mesma, o que, classicamente, não acontece.


Visão geral[editar | editar código-fonte]

A energia pode ser liberada a partir de um poço de potencial, se energia suficiente for adicionada ao sistema de tal modo que o máximo local seja superado. Em física quântica, uma partícula pode ser capaz de superar uma barreira de potencial com energia superior à energia da partícula devido devido às características probabilísticas advindas da função de onda das partículas quânticas. Nestes casos, a partícula pode tunelar através das paredes de um poço de potencial.
A partir de uma analogia clássica, pode-se pensar no gráfico de uma função energia potencial bidimensional como sendo uma superfície de energia potencial, que pode ser imaginada de forma semelhante à superfície da Terra em uma paisagem de colinas e vales. Sendo assim, um poço de potencial seria análogo a um vale rodeado por todos os lados por terrenos mais altos e que, portanto, pode ser preenchido com água (por exemplo, ser um lago) sem qualquer água fluindo para um outro mínimo mais baixo (por exemplo, o nível do mar). No caso da gravidade, a região em torno de uma massa é um poço de potencial gravitacional, a menos que a densidade de massa seja tão pequena que as forças de maré de outras massas sejam maiores do que a gravidade do próprio corpo. Uma colina de potencial é o oposto de um poço de potencial, e é a região em torno de um máximo local.

Confinamento quântico[editar | editar código-fonte]

O confinamento quântico é responsável pelo aumento da diferença de energia entre estados de energia e o gap de energia, um fenômeno bem relacionado com as propriedades óticas e eletrônicas de materiais.
O confinamento quântico pode ser observado quando o diâmetro de confinamento do sistema for da mesma ordem de magnitude do comprimento de onda de de Broglie da partícula confinada. O potencial confinador pode ter origem em barreiras de potenciais devidos a interfaces entre estruturas ou em campos aplicados ao sistema. As propriedades eletrônicas e ópticas do material são significativamente afetadas quando suas dimensões são drasticamente alteradas. Isso se deve basicamente por serem mais pronunciados os efeitos causados pelo confinamento em certa direção do material, dentre eles pode-se perceber que existe uma quantização da energia que as partículas podem assumir.
É interessante notar que a solução formal da equação de Schrödinger para sistemas confinados dá ênfase à relação entre a energia e a evolução temporal da fase da função de onda da partícula. A função de onda da partícula é uma função de onda coerente, i.e. a fase da onda só pode mudar por efeito da evolução temporal e por ação determinística de forças. Os efeitos quânticos são preservados quando a função de onda se comporta de maneira coerente. Em sólidos reais, os elétrons geralmente experimentam espalhamentos aleatórios tanto de forma elástica quanto inelástica, a menos que se faça controle preciso das condições e mantenha-se a coerência da função de onda da partícula.

Sistemas de baixa dimensionalidade[editar | editar código-fonte]

O confinamento quântico introduz o estudo de estruturas nas quais as dimensões da amostra e/ou a existência de interfaces entre materiais distintos afloram novas propriedades, inclusive alterações na dimensão espacial efetiva do sistema. Nesse aspecto, a física de sistemas de baixa dimensionalidade usa dos conceitos advindos da mecânica quântica para explorar as propriedades de sistemas confinados e suas possíveis aplicabilidades.[1]

Poços quânticos[editar | editar código-fonte]

No contexto de sistemas nanoestruturados, são denominados genericamente poços quânticos os sistemas estruturados em camadas, que são homogêneos e macroscópicos em duas dimensões, mas apresentam interfaces entre as camadas ao longo da direção perpendicular, sendo essas camadas suficientes para causar confinamento quântico, definindo, assim, um poço nessa direção.
De forma geral, tem-se um sistema tridimensional com um potencial que varia apenas ao longo de uma das direções. Através da solução da equação de Schrödinger percebe-se que as energias resultantes descrevem uma partícula livre em duas dimensões enquanto que confinada, e, portanto, com energias quantizadas, em uma direção. Isso configura um gás de elétrons bidimensional.[1]

Fios quânticos[editar | editar código-fonte]

É possível construir heteroestruturas nas quais o confinamento quântico se dá em duas direções e mantendo uma das direções livre. Isto caracteriza um fio quântico. Nele, percebe-se, através da solução da equação de Schrödinger para o sistema, que em duas direções existirão energias quantizadas enquanto que na outra tem-se um gás de elétrons unidimensional. Através de uma análise menos superficial, nota-se que densidade de estados no nível de Fermi é importante na determinação das quantidades termodinâmicas e coeficientes de transporte do material e que o confinamento quântico tem efeito marcante sobre a forma relevante da densidade de estados. Considerando o exposto, podemos inferir mudanças nas propriedades de transporte eletrônico de sistemas confinados e pode-se perceber que as características de um fio quântico diferem substancialmente de fios metálicos macroscópicos. A condutância de um fio quântico depende apenas de constantes universais e não de características extensivas do sistema, tais como geometria e material.
X



FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS =


TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
número atômico, estrutura eletrônica, níveis de energia 
onde c, velocidade da luz, é igual a .]
X
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI.
  • X
  • CATEGORIAS DE GRACELI
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D

X
 [ESTADO QUÂNTICO]


Onde M é o número de canais definidos pelo par de números quânticos associados à quantização devida ao confinamento em direções transversais. A condutância quântica é completamente independente tanto da geometria quanto do material e é relacionado basicamente com constantes universais.[1]

Pontos quânticos[editar | editar código-fonte]

O último passo na sequência é também confinar a terceira dimensão, o que caracteriza um ponto quântico. Neste caso, não resta nenhuma dimensão livre e configura uma nanopartícula.[1]




Energia potencial (simbolizado por U ou Ep) é a forma de energia que está associada a um sistema onde ocorre interação entre diferentes corpos[1] e está relacionada com a posição que o determinado corpo ocupa. E sua unidade no Sistema Internacional de Unidades (SI), assim como o trabalho, é joule (J).[2]
energia potencial é o nome dado a forma de energia quando está “armazenada”, isto é, que pode a qualquer momento manifestar-se,[3] por exemplo, sob a forma de movimento, e a energia potencial é derivada de forças conservativas, ou seja, a trajetória do corpo não interfere no trabalho realizado pela força,[4] o que importa são a posição final e a inicial, significando que, o percurso não interfere no valor final da variação da energia potencial.


Definição de energia potencial[editar | editar código-fonte]

A energia potencial está profundamente conectada ao conceito de força. Se o trabalho feito por uma força em um corpo que se move entre pontos A e B não depende do caminho percorrido entre esses pontos, isto é, se o trabalho é feito por uma força conservativa; então é possível definir uma função escalar , de modo que seu gradiente - com o sinal trocado - seja a força  aplicada durante o percurso. Em termos matemáticos:
X



FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS =


TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
número atômico, estrutura eletrônica, níveis de energia 
onde c, velocidade da luz, é igual a .]
X
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI.
  • X
  • CATEGORIAS DE GRACELI
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D

X
 [ESTADO QUÂNTICO]


Aplicando essa definição à definição de trabalho feito em uma trajetória C entre pontos A e B obtém-se:
X



FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS =


TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
número atômico, estrutura eletrônica, níveis de energia 
onde c, velocidade da luz, é igual a .]
X
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI.
  • X
  • CATEGORIAS DE GRACELI
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D

X
 [ESTADO QUÂNTICO]


Isso implica que o trabalho feito por uma força conservativa é a diferença entre o valor inicial e o valor final da energia potencial.

Tipos de energia potencial





Tunelamento quântico (ou efeito túnel) é um fenômeno da mecânica quântica no qual partículas podem transpor um estado de energia classicamente proibido. Isto é, uma partícula pode escapar de regiões cercadas por barreiras potenciais mesmo se sua energia cinética for menor que a energia potencial da barreira. Existem muitos exemplos e aplicações para os quais o tunelamento tem extrema importância, podendo ser observado no decaimento radioativo alfa, na fusão nuclear, na memória Flash, no diodo túnel e no microscópio de corrente de tunelamento (STM).[1]
Ficheiro:Quantum tunnel effect and its application to the scanning tunneling microscope.ogv
Vídeo explicativo sobre o Tunelamento Quântico e o Microscópio de Tunelamento
Neste fenômeno consolidam-se conceitos imprescindíveis para a mecânica quântica como a natureza ondulatória da matéria, a função de onda associada a partículas, bem como o princípio da incerteza de Heisenberg.[2]

História[editar | editar código-fonte]

O tunelamento quântico foi desenvolvido a partir do estudo da radioatividade. Em meio ao crescente sucesso da mecânica quântica na terceira década do século 20, nada era mais impressionante do que o entendimento do Efeito Túnel - a penetração de ondas de matéria e a transmissão de partículas através de uma barreira potencial. Depois de algum tempo, o estudo mais aprofundado envolvendo tunelamento, supercondutoressemicondutores e a invenção do Microscópio de tunelamento, por exemplo, renderam à física 5 prêmios Nobel.[3]
Em 1927, Friedrich Hund foi o primeiro a tomar nota da existência do Efeito Túnel em seus trabalhos sobre o potencial de poço duplo.[3] George Gamow, em 1928, resolveu a teoria do decaimento alfa de um núcleo, via tunelamento com uma pequena ajuda matemática de Nikolai Kochin.[4]
Influenciado por Gamow, Max Born desenvolveu a teoria do Tunelamento , percebendo-a como uma consequência da mecânica quântica, aplicável não só à física nuclear, mas a uma série de outros sistemas diferentes. Os físicos Leo EsakiIvar Giaever e Brian Josephson descobriram, respectivamente, o tunelamento de elétrons em semicondutores, supercondutores e a supercorrente através de junções em supercondutores,o que lhes rendeu o Premio Nobel de Física no ano de 1973.[5]

Explicação do fenômeno[editar | editar código-fonte]

Uma analogia comumente utilizada para explicar tal fenômeno envolve uma colina e um trenó subindo em direção ao cume da colina. Imaginando que o trenó esteja subindo a colina, parte de sua energia cinética que se transforma em energia potencial gravitacional U. Quando o cume da colina é atingido, podemos pensar que o trenó tem energia potencial Ub. Se a energia mecânica inicial E do trenó for maior que Ub, o trenó poderá chegar do outro lado da colina. Contudo, se E for menor que Ub, a física clássica garante que não existe a possibilidade de o trenó ser encontrado do outro lado da colina. Na mecânica quântica, porém, existe uma probabilidade finita de que esse trenó apareça do outro lado, movendo-se para direita com energia E como se nada tivesse acontecido. Dizemos que a colina se comporta como uma barreira de energia potencial, exemplificando de maneira simplória o efeito Túnel.[6]
Reflexão e tunelamento através de uma barreira potencial por um pacote de ondas. Uma parte do pacote de ondas passa através da barreira, o que não é possível pela física clássica.
Considerando um elétron e a densidade de probabilidade  da onda de matéria associada a ele, podemos pensar em três regiões: antes da barreira potencial (região I), a região de largura L da barreira (região II) e uma região posterior à barreira (região III). A abordagem da mecânica quântica é baseada na equação de Schrödinger, a qual tem solução para todas as 3 regiões. Nas regiões I e III, a solução é uma equação senoidal, enquanto na segunda - a solução é uma função exponencial. Nenhuma das probabilidades é zero, embora na região III a probabilidade seja bem baixa.[2]
O coeficiente de transmissão (T) de uma determinada barreira é definido como uma fração dos elétrons que conseguem atravessá-la. Assim, por exemplo, se T= 0,020, isso significa que para cada 1000 elétrons que colidem com a barreira, 20 elétrons (em média) a atravessam e 980 são refletidos.
 , 
X



FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS =


TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
número atômico, estrutura eletrônica, níveis de energia 
onde c, velocidade da luz, é igual a .]
X
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI.
  • X
  • CATEGORIAS DE GRACELI
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D

X
 [ESTADO QUÂNTICO]


Por causa da forma exponencial da equação acima, o valor de T é muito sensível às três variáveis de que depende: a massa m da partícula, a largura L da barreira e a diferença de energia de Ub-E entre a energia máxima da barreira e a energia da partícula. Constatamos também pelas equações que T nunca pode ser zero.[6]